
Definitions
Failure-modes

Solutions
Tips and tricks

Parallel and Concurrent Programming

Jacob Sparre Andersen

JSA Research & Innovation

October 2017

Jacob Sparre Andersen Parallel and Concurrent Programming

Definitions
Failure-modes

Solutions
Tips and tricks

Parallel and concurrent programming

What it is, and how to do it with programming language support.

Using Ada as the demonstration language, I will give a quick
course in how to write concurrent and parallel programs. Both
language constructs and conceptual issues will be covered.

Jacob Sparre Andersen Parallel and Concurrent Programming

Definitions
Failure-modes

Solutions
Tips and tricks

Terminology
Basic concepts

Terminology

Parallel programming
Concurrent programming

Jacob Sparre Andersen Parallel and Concurrent Programming

Definitions
Failure-modes

Solutions
Tips and tricks

Terminology
Basic concepts

Terminology: Parallel programming

Programming for actual simultaneous execution.

(Single | Multiple) Instruction (Single | Multiple) Data:
SISD - how we learn to program
SIMD - vector processors
MIMD - multi-core processors
MISD - space shuttle avionics software

Typically seen as way to speed a program up:

t ′ = t · (1 − p +
p
n
)

Jacob Sparre Andersen Parallel and Concurrent Programming

Definitions
Failure-modes

Solutions
Tips and tricks

Terminology
Basic concepts

Terminology: Concurrent programming

Programming logically simultaneous execution.

A way to abstract away consideration about how many cores
are actually available for simultaneous execution.

The actual execution may be sequential (i.e. on a single core
computer).

An extension of how programming languages (mostly) abstract
away unnecessary details about how the processors we’re
going to run our programs on work.

Jacob Sparre Andersen Parallel and Concurrent Programming

Definitions
Failure-modes

Solutions
Tips and tricks

Terminology
Basic concepts

Basic concepts

Process: A sequence of instructions which executes
concurrently with other sequences of instructions.
Shared resource: Any kind of resource (memory area, I/O
port, etc.) which may be used by more than one process.
Mutual exclusion: Preventing two processes from
simultaneously accessing a resource.
Atomic action: An operation on a shared resource which
can not be interleaved with other operations on the same
resource.
Synchronisation: Coordination of processes to reach a
common goal.

Jacob Sparre Andersen Parallel and Concurrent Programming

Definitions
Failure-modes

Solutions
Tips and tricks

Deadlock
Starvation
Race condition

Failure-modes

Deadlock:
Processes not making progress (typically because of
competition about shared resources).
Starvation:
Indefinite postponement of processes (typically because
other processes prevent their access to shared resources).
Race condition:
When the behaviour of the program depends on the
sequence or timing of external events (in an unintended
manner).

Jacob Sparre Andersen Parallel and Concurrent Programming

Definitions
Failure-modes

Solutions
Tips and tricks

Deadlock
Starvation
Race condition

Failure-modes: Deadlock

Two processes (p1 and p2) and two resources (r1 and r2):

Step p1 p2
1 Takes r1. Takes r2.
2 Takes r2. Takes r1.
3 Manipulates r1 and r2. Manipulates r1 and r2.
3 Releases r1. Releases r2.
4 Releases r2. Releases r1.

If both processes finish step 1 before either of them start on
step 2, both processes will be stuck in step 2 because the other
process has the missing resource.

Jacob Sparre Andersen Parallel and Concurrent Programming

Definitions
Failure-modes

Solutions
Tips and tricks

Deadlock
Starvation
Race condition

Failure-modes: Starvation

Indefinite postponement of a process.

If a process is waiting for access to a shared resource, and
other processes continuously keeps it locked out, we say that
the process is being starved.

Jacob Sparre Andersen Parallel and Concurrent Programming

Definitions
Failure-modes

Solutions
Tips and tricks

Deadlock
Starvation
Race condition

Failure-modes: Race condition

Race conditions typically occur, when a sequence of operations
is assumed to be atomic by the programmer, while this isn’t the
case in reality.

if [! -d "${directory}"]; then
mkdir "${directory}"

fi

Exercise:

How can this fail?

Jacob Sparre Andersen Parallel and Concurrent Programming

Definitions
Failure-modes

Solutions
Tips and tricks

Process
Mutual exclusion
Deadlock
Synchronisation

task

In Ada a process is called a “task”.

A trivial task declaration:

task Multiply;

And a matching body:

task body Multiply is
begin

Product := 1.0;
for Element of Values loop

Product := Product * Element;
end loop;

end Multiply;

Jacob Sparre Andersen Parallel and Concurrent Programming

Definitions
Failure-modes

Solutions
Tips and tricks

Process
Mutual exclusion
Deadlock
Synchronisation

Statically or dynamically created

Tasks can exist as stand-alone entities or as types.

task Multiply;

task type Receiver;

You create an actual task from a task type either by declaring
an object of the type, or by allocating a task object on the heap:

One : Receiver; -- object

Two := new Receiver; -- heap

Jacob Sparre Andersen Parallel and Concurrent Programming

Definitions
Failure-modes

Solutions
Tips and tricks

Process
Mutual exclusion
Deadlock
Synchronisation

procedure Vector_Math (Values : in Vector;
Sum : out Scalar;
Product : out Scalar) is

task Multiply;

task body Multiply is
begin

Product := 1.0;
for Element of Values loop

Product := Product * Element;
end loop;

end Multiply;
begin

Sum := 0.0;
for Element of Values loop

Sum := Sum + Element;
end loop;

end Vector_Math;

Jacob Sparre Andersen Parallel and Concurrent Programming

Definitions
Failure-modes

Solutions
Tips and tricks

Process
Mutual exclusion
Deadlock
Synchronisation

Protected object

In Ada you implement mutual exclusion using a “protected
object”.

A protected object consists of a number of operations, and
some private data.

To the extent that the operations only operate on the private
data of the protected object, they are atomic.

Jacob Sparre Andersen Parallel and Concurrent Programming

Definitions
Failure-modes

Solutions
Tips and tricks

Process
Mutual exclusion
Deadlock
Synchronisation

Example (without mutual exclusion)

type Population_Size is range 0 .. 100;
-- Defined by fire regulations.

package Population is
procedure Increment;
procedure Decrement;
function Current return Population_Size;

private
Count : Population_Size := 0;

end Population;

Exercise:
What can go wrong, if you have multiple processes (tasks)
accessing the Population package?

Jacob Sparre Andersen Parallel and Concurrent Programming

Definitions
Failure-modes

Solutions
Tips and tricks

Process
Mutual exclusion
Deadlock
Synchronisation

Example

Here as a protected object with proper mutual exclusion:

type Population_Size is range 0 .. 100;
-- Defined by fire regulations.

protected Population is
entry Increment;
procedure Decrement;
function Current return Population_Size;

private
Count : Population_Size := 0;

end Population;

Jacob Sparre Andersen Parallel and Concurrent Programming

Definitions
Failure-modes

Solutions
Tips and tricks

Process
Mutual exclusion
Deadlock
Synchronisation

Explanations

function Current return Population_Size;

functions have joint read access and blocks writing to the
private data.

procedure Decrement;

A procedure has exclusive read/write access to the private
data.

entry Increment;

An entry has exclusive read/write access to the private data,
but calls can be blocked based on the internal state.

Jacob Sparre Andersen Parallel and Concurrent Programming

Definitions
Failure-modes

Solutions
Tips and tricks

Process
Mutual exclusion
Deadlock
Synchronisation

Example (implementation)

protected body Population is
entry Increment
when Count < Population_Size’Last

is
begin
Count := Count + 1;

end Increment;

procedure Decrement is
begin

Count := Count - 1;
end Decrement;

function Current return Population_Size is (Count);
end Population;

Jacob Sparre Andersen Parallel and Concurrent Programming

Definitions
Failure-modes

Solutions
Tips and tricks

Process
Mutual exclusion
Deadlock
Synchronisation

Deadlock: Practical help

Finding deadlocks is NP-complete problem.

But a research group in Vienna has developed a technique
using Kronecker algebra for proving the absence of deadlocks1.

There can still be deadlocks hidden in dead code, which are not
detected, but as the code will never be executed, it is not a
problem in practice.

1Which is really what we want to know as developers.
Jacob Sparre Andersen Parallel and Concurrent Programming

Definitions
Failure-modes

Solutions
Tips and tricks

Process
Mutual exclusion
Deadlock
Synchronisation

Deadlocks: A simple protocol

A basic procedure for avoiding potential deadlocks due to
competition for shared resources is that all processes
takes/locks the shared resources in the same order.

Swapping the order of taking the resources in one of the two
processes in the deadlock example earlier would prevent a
deadlock from ever occurring there.

Jacob Sparre Andersen Parallel and Concurrent Programming

Definitions
Failure-modes

Solutions
Tips and tricks

Process
Mutual exclusion
Deadlock
Synchronisation

Synchronisation

In Ada we can implement synchronisation between tasks either
indirectly using protected objects or directly using a
“rendezvous”.

The rendezvous is a client-server message passing
construction:

The server task declares a number of entries, which it may
accept and execute at its leisure. (There is no guarantee
that the server task will ever accept its published entries.)
The client task can then call any of these entries (it looks
like a plain procedure call).

Note that any task can function both as a client and a server.

Jacob Sparre Andersen Parallel and Concurrent Programming

Definitions
Failure-modes

Solutions
Tips and tricks

Process
Mutual exclusion
Deadlock
Synchronisation

Synchronisation (continued)

If a server is ready to accept an entry, but no client has called it
yet, the server task will be blocked (waiting) until somebody
calls the entry2.

If a client calls an entry, but the server isn’t ready to accept it,
then the client task will be blocked (waiting) until the server is
ready to accept the entry call3.

2We skip selective accepts for now.
3The client-side too has a bit more options than this.

Jacob Sparre Andersen Parallel and Concurrent Programming

Definitions
Failure-modes

Solutions
Tips and tricks

Process
Mutual exclusion
Deadlock
Synchronisation

Synchronisation (continued)

Specification of a task with a single entry:
task Worker is

entry Set_ID (Value : in IDs);
end Worker;

Implementation of the same task:
task body Worker is

ID : IDs;
begin

accept Set_ID (Value : in IDs) do
ID := Value;

end Set_ID;

Do_Something (ID);
end Worker;

Jacob Sparre Andersen Parallel and Concurrent Programming

Definitions
Failure-modes

Solutions
Tips and tricks

Process
Mutual exclusion
Deadlock
Synchronisation

Synchronisation: Semaphore

A protected object with a counter and two operations:
Wait: Wait until the counter is greater than zero, then
decrement the counter.
Signal: Increment the counter.

Semaphores are used to provide mutual exclusion in cases
where you can’t put the whole protected block into a protected
object.

Jacob Sparre Andersen Parallel and Concurrent Programming

Definitions
Failure-modes

Solutions
Tips and tricks

Process
Mutual exclusion
Deadlock
Synchronisation

Synchronisation: Semaphore in Ada

The specification of a semaphore type in Ada:

package Semaphore is
protected type Instance (Initial_Value : Natural) is

entry Wait;
procedure Signal;

private
Count : Natural := Initial_Value;

end Instance;
end Semaphore;

Jacob Sparre Andersen Parallel and Concurrent Programming

Definitions
Failure-modes

Solutions
Tips and tricks

Process
Mutual exclusion
Deadlock
Synchronisation

Synchronisation: Semaphore in Ada

The implementation of the semaphore type:

package body Semaphore is
protected body Instance is

procedure Signal is
begin

Count := Count + 1;
end Signal;

entry Wait when Count > 0 is
begin

Count := Count - 1;
end Wait;

end Instance;
end Semaphore;

Jacob Sparre Andersen Parallel and Concurrent Programming

Definitions
Failure-modes

Solutions
Tips and tricks

Process
Mutual exclusion
Deadlock
Synchronisation

Synchronisation: Semaphore use

Lock : Semaphore.Instance (Initial_Value => 1);

procedure Put_Line (Item : in String) is
begin

Lock.Wait;
Ada.Text_IO.Put_Line (Item);
Lock.Signal;

end Put_Line;

The procedure Ada.Text_IO.Put_Line is potentially
blocking, so we are not allowed to call it from inside a protected
object. Instead we use the semaphore (Lock) to ensure that
only one task at a time is calling Ada.Text_IO.Put_Line
(through this package).

Jacob Sparre Andersen Parallel and Concurrent Programming

Definitions
Failure-modes

Solutions
Tips and tricks

Process
Mutual exclusion
Deadlock
Synchronisation

Synchronisation: Finalised lock (specification)

with Ada.Finalization;

generic
package Finalized_Lock is

-- An object of this type will automatically wait on
-- the semaphore declared inside the package when it
-- is created, and signal the semaphore when it goes
-- out of scope.
--
type Instance is new Ada.Finalization.

Limited_Controlled with null record;
private

overriding
procedure Initialize (Item : in out Instance);
overriding
procedure Finalize (Item : in out Instance);

end Finalized_Lock;

Jacob Sparre Andersen Parallel and Concurrent Programming

Definitions
Failure-modes

Solutions
Tips and tricks

Process
Mutual exclusion
Deadlock
Synchronisation

Synchronisation: Finalised lock (implementation)

package body Finalized_Lock is
Lock : Semaphore.Instance (Initial_Value => 1);

overriding
procedure Initialize (Item : in out Instance) is

pragma Unreferenced (Item);
begin

Lock.Wait;
end Initialize;

overriding
procedure Finalize (Item : in out Instance) is

pragma Unreferenced (Item);
begin

Lock.Signal;
end Finalize;

end Finalized_Lock;

Jacob Sparre Andersen Parallel and Concurrent Programming

Definitions
Failure-modes

Solutions
Tips and tricks

Process
Mutual exclusion
Deadlock
Synchronisation

Synchronisation: Finalised lock (use)

task body GULCh is
Key : Lock.Instance with Unreferenced;

begin
Ada.Text_IO.Put ("Linux ");
delay 0.2;
Ada.Text_IO.Put ("Day ");
delay 0.2;
Ada.Text_IO.Put ("2017 ");
delay 0.2;
Ada.Text_IO.Put ("a ");
delay 0.2;
Ada.Text_IO.Put_Line ("Cagliari");

end GULCh;

Jacob Sparre Andersen Parallel and Concurrent Programming

Definitions
Failure-modes

Solutions
Tips and tricks

Process
Mutual exclusion
Deadlock
Synchronisation

Synchronisation: Futures

Futures is a popular concept in non-concurrent programming
languages.

Basically your apparently non-concurrent program hands off
some processing to an invisible process to get the result back
sometime in the future.

The equivalent Ada construct is to use concurrency explicitly,
and exchange results using a protected object or a direct
rendezvous.

Jacob Sparre Andersen Parallel and Concurrent Programming

Definitions
Failure-modes

Solutions
Tips and tricks

Process
Mutual exclusion
Deadlock
Synchronisation

Synchronisation: Interrupts

Interrupts represent events detected by the hardware.

In Ada you use protected procedures as interrupt handlers:

protected Converter is
entry Read (Value : out Voltage);

private
procedure Handler;
pragma Attach_Handler (Handler, SIGINT);

entry Wait_For_Completion (Value : out Voltage);

Busy : Boolean := False;
Conversion_Complete : Boolean := False;

end Converter;

Jacob Sparre Andersen Parallel and Concurrent Programming

Definitions
Failure-modes

Solutions
Tips and tricks

Task attributes
Task termination
CPU

Tips and tricks

Some Ada specific tips for parallel and concurrent
programming.

Jacob Sparre Andersen Parallel and Concurrent Programming

Definitions
Failure-modes

Solutions
Tips and tricks

Task attributes
Task termination
CPU

Task attributes

The package Ada.Task_Attributes allows the developer to
attach an attribute (i.e. a variable) to all tasks in a system.

This can for example be useful if you want to let each task have
its own database connection, but you don’t want to make that
visible in the source text for individual tasks.

Jacob Sparre Andersen Parallel and Concurrent Programming

Definitions
Failure-modes

Solutions
Tips and tricks

Task attributes
Task termination
CPU

Task termination

The package Ada.Task_Termination allows the developer
to attach a termination handler to all dependent tasks (or to a
specific task).

In one application I work on, we are using it to ensure that it is
logged if a task terminates in an unexpected manner.

Jacob Sparre Andersen Parallel and Concurrent Programming

Definitions
Failure-modes

Solutions
Tips and tricks

Task attributes
Task termination
CPU

CPU

Ada defines the aspect CPU for tasks and task types.

You can use it to assign specific tasks to run on specific CPU’s.
The problem with this is that you end up hard-coding hardware
architecture in the source code, thus writing concrete, parallel
programs instead of abstracted, concurrent programs.
But there are certainly cases where it is the correct approach.

Jacob Sparre Andersen Parallel and Concurrent Programming

Definitions
Failure-modes

Solutions
Tips and tricks

References

If you want to learn more, I suggest the book “Building Parallel,
Embedded, and Real-Time Applications with Ada” [1].

Several of the examples in this presentation were inspired by it.

John W. McCormick, Frank Singhoff, and Jérôme Hugues.
Building Parallel, Embedded, and Real-Time Applications
with Ada.
Cambridge, 2011.

Jacob Sparre Andersen Parallel and Concurrent Programming

Definitions
Failure-modes

Solutions
Tips and tricks

Contact information

Jacob Sparre Andersen
JSA Research & Innovation
jacob@jacob-sparre.dk

http://www.jacob-sparre.dk/

Examples:
http:

//www.jacob-sparre.dk/programming/parallel_
programming/linux-day-2017-examples.zip

Jacob Sparre Andersen Parallel and Concurrent Programming

http://www.jacob-sparre.dk/
http://www.jacob-sparre.dk/programming/parallel_programming/linux-day-2017-examples.zip
http://www.jacob-sparre.dk/programming/parallel_programming/linux-day-2017-examples.zip
http://www.jacob-sparre.dk/programming/parallel_programming/linux-day-2017-examples.zip

	Definitions
	Terminology
	Basic concepts

	Failure-modes
	Deadlock
	Starvation
	Race condition

	Solutions
	Process
	Mutual exclusion
	Deadlock
	Synchronisation

	Tips and tricks
	Task attributes
	Task termination
	CPU

